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The development of disturbances (two-dimensional non-linear and three-dimensional 
linear) in the entrance region of a circular pipe is studied in the limit of Reynolds 
number R+ co in the framework of triple-deck theory. It is found that lower-branch 
axisymmetric disturbances can interact in the resonant manner. Numerical calculations 
show that a two-dimensional nonlinear wave packet grows much more rapidly than 
that in the boundary layer on a flat plate, producing a spike-like solution which seems 
to become singular at a finite time. Large-sized, short-scaled disturbances are also 
studied. In this case the development of axisymmetric disturbances is governed by 
single one-dimensional equation in the form of the Korteweg-de Vries and 
Benjamin-Ono equations in the long- and short-wave limits respectively. The nonlinear 
interactions of these disturbances lead to the formation of solitons which can run both 
upstream and downstream. Linear three-dimensional wave packets are also calculated. 

1. Introduction 
The study of the instability of inlet pipe flow has occupied many researchers for the 

past several decades. This interest is excited by the fact that linear stability analysis of 
fully developed Hagen-Poiseuille flow predicts that it is stable whereas regions of 
fully developed turbulent flow were observed by Reynolds as far back as 1883. 
Therefore it was supposed that the observed instability is connected with the instability 
of a boundary layer which exist long before the pipe flow becomes fully developed. The 
linear analysis of Tatsumi (1952) and Huang & Chen (1974) has demonstrated such a 
possibility, and experiments by Wygnanski & Champagne (1973) and Sarpkaya (1975) 
confirmed this suggestion. It was found that instability waves, originating in a 
boundary layer, may burst into a turbulent spot. As the spot travels downstream it may 
increase in size until its dimension becomes comparable with the radius of the pipe. As 
a result a turbulent slug appears, temporarily filling the entire cross-section of the pipe 
with a turbulent flow. (It should be remarked that another type of turbulent flow can 
exist, namely puffs which are generated by larger disturbances at the inlet; both 
disturbance types can be observed long before the flow becomes fully developed.) 

Another possible explanation of circular pipe flow instability is that laminar- 
turbulent transition may be initiated by disturbances, whose size, although small, 
is sufficiently large relative to the inverse powers of Reynolds number that the stability 
properties of the basic flow are altered significantly, by a relative amount of O( l), from 
the classical linear properties. Such a rational high-Reynolds-number analysis was 
done by Smith & Bodonyi (1980) in the context of a fully nonlinear critical layer. Their 
suggestions on the so-called Rayleigh stage of nonlinear amplitude-dependent 
instability gave rise to the theory by Smith, Doorly & Rothmayer (1990), where an 
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attempt was made to give a unified theoretical description of spots in channels, pipes 
and boundary layers as well. 

In the present study another high-Reynolds-number approach is developed, namely 
that based on the triple-deck theory of Stewartson (1969), Neiland (1969) and Messiter 
(1970). But the present study does not contradict the concept of Smith et al. (1990) and 
in fact may be regarded as complementary to theirs. 

The triple-deck approach to the problem of the high-Reynolds-number instability 
has been intensively developed over the last ten years. The studying was initiated in 
papers by Smith (1979) and Zhuk & Ryzhov (1980), where it was shown that lower- 
branch Tollmien-Schlichting waves can be described in the framework of the triple- 
deck theory. Smith (1976) first applied triple-deck theory to stationary problems of 
inlet flows (in pipes and channels). Instability problems of entry flows then were studied 
by Smith & Bodonyi (1980), Bogdanova (1982) and Bogdanova & Ryzhov (1983). 
However, these studies were restricted to the analysis of normal modes with particular 
attention to linear neutral waves. But as a rule the most unstable waves play a 
dominant part in the linear instability process. So an extensive analysis of the 
dispersion relation is needed and it is given below in 93.2. It provides an explanation 
for particular features of the three-dimensional linear wave packets presented in $ 3.3. 
The subsequent nonlinear stage of wave-packet development is investigated in $4, but 
only for axisymmetric disturbances. 

Linear analysis predicts the possibility of resonant interactions on purely 
axisymmetric (i.e. effectively two-dimensional) disturbances. The computations of $4.1 
show that resonant interactions do take place for dimensionless pipe radius yo 6 1. 
They lead to the enhanced growth of disturbances, producing a sharp spike, so the 
possible breakdown of the governing equations occurs sooner than that in the case of 
two-dimensional disturbances in the boundary layer on a flat plate (see Duck 1985, 
1987; Ryzhov & Savenkov 1989, 1992 and 94.1.1) when non-resonant amplification 
takes place. In the boundary layer on a flat plate resonant interactions may and do 
occur, but only on three-dimensional waves. These interactions play a key (or at least 
important) role in most cases of laminar-turbulent transition (Kachanov & Levchenko 
1982, 1984; Kachanov 1987, 1991 a) and references therein). 

A theoretical investigation of resonant-triad interactions was put forward by Craik 
(197 I), who proposed that a two-dimensional Tollmien-Schlichting (TS) wave could 
interact nonlinearly with two oblique three-dimensions1 TS waves, in such a way that 
the nonlinear interplay reinforces all three waves. Resonant interactions were studied 
on the basis of a rational high-Reynolds-numbers approach by Smith & Stewart (1987) 
(a finite-amplitude/relatively high-frequency approach) and Goldstein & Leib (1989), 
Goldstein & Choi (1989) (the effect of critical-layer nonlinearity on oblique instability 
waves on shear layers). Thus a specific feature of inlet flows (not only pipe, but channel 
flows as well; see Savenkov 1992) is that powerful resonant interactions are possible 
even on two-dimensional disturbances. 

Further computations show that with the decrease of pipe radius yo the maximum 
growth rate falls and the spike formation process is prolonged ($4.1.3). A high- 
frequency/large-amplitude analysis in the limit as ro + 0 ($4.2) leads to an inviscid 
problem which for a boundary layer on a flat plate was first formulated by Zhuk & 
Ryzhov (1982) and Smith & Burggraf (1985). In the latter case this inviscid problem 
reduces to the well-known Benjamin-Ono equation having solutions in forms of 
solitons. The renewed interest in the Benjamin-Ono equation (in the context of 
laminar-turbulent transition) in Rothmayer & Smith (1987) and Ryzhov (1990) is 
associated with experimental observations of soliton-like structures (Borodulin & 
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Kachanov 1990; Kachanov 1991 a,  b) in the K-regime of boundary-layer transition. So 
$ 5  is devoted to the investigation of an inviscid problem obtained for the inlet pipe 
flow. (This problem can also be derived from the original system of Navier-Stokes 
equations.) This problem also admits solitons, which are studied in $5.2. It is shown 
that in two extreme limits - long-wave and short-scale ones - the problem reduces to 
the classical Kortewegde Vries and Benjamin-Ono equations respectively. In the 
general case solitons are calculated by use of a pseudo-spectral scheme. They can run 
both upstream and downstream. In 95.3 a receptivity problem is considered, i.e. the 
problem of how solitons are produced by external sources. 

2. Problem formulation 
We shall consider the entrance region of a circular pipe flow at high Reynolds 

numbers. The boundary layer emanating from the leading edge of the pipe wall ‘fills’ 
the pipe only very far from the inlet. So at high Reynolds numbers there is a vast region 
of developing flow, the instability of which will be considered here following Smith & 
Bodonyi (1980), Bogdanova & Ryzhov (1983) and Bogdanova (1982). 

Following Smith (1976) we consider disturbances at the distance L* - b,* R i  A from 
the entrance (the local Reynolds number R, = U z  L*/vz is based on the length L*; U z  
is the free-stream speed of the oncoming uniform flow, v z  is the kinematic viscosity and 
pz is the density; the small parameter R;: 4 A 4 1). Hence the pipe radius b,* is of the 
order of the lengthscale b* - L*R,i A-’ of the interaction zone in the triple-deck 
structure of Stewartson (1969), Neiland (1969) and Messiter (1970). 

We shall use a non-dimensional system of units, with velocity components (u, u, w), 
cylindrical coordinates (x, r ,  e), excess pressure p and time t being non-dimensionalized 
with respect to U:, b*, p*Uz2 and b* /Uz  respectively. Finally we define R = U z  b*/vz 
and set R+m. 

In the lower deck, which is of primary concern in the triple-deck theory, we put 
(Smith 1976; Smith & Bodonyi 1980; Bogdanova 1982) 

( u , v , w , p ) = ( A U , - A 3 V , A W , A ~ P ) +  ... ) (2.1 a )  

(2.1 b) 
with timespace variables 

where the non-dimensional pipe radius ro = bt/b*. 
The governing equations in this deck are then 

(t,x,y,O) = (A-1 t ,A2R+X,ro-A2Y,8)+.  .., 

(2.2 a, b) 

(2.24 

(2.2d) 

For A = R-; this system coincides with the system of Prandtl equations, but now the 
pressure P is self-induced and unknown. This pressure is produced by means of the 
interaction of the lower deck with the outer region of an inviscid irrotational flow. The 
flow in the outer region turns out to be governed by the Prandtl-Glauert equation, 
solution of which may be symbolically written as 

P = 9 ( A )  (2.3a) 
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FIGURE 1 (a, b). For caption see facing page. 

where the linear operator 2 is defined by its spectrum A (see, for example, Smith 1976; 
Bogdanova 1982) : 

Y ( E )  = AE, E = exp (ikX+ imd), (2.3 b) 

h,(k) = kZm(k~o)/~w.o)3 (2.3 c) 

where I,(z) is modified Bessel function of the first kind and mth order. 
Here the displacement function A(t ,  X ,  0) arises from consideration of flow in the 

main deck coinciding with the basic boundary layer. To close the problem we must set 
matching conditions 

and wall conditions which depend on the particular situation. 

this reason the cases A - R-d and A % R-i will next be considered separately. 

U - Y + A ,  W+O as Y + K I  (2.4) 

Further formulation of the problem depends on the relation between A and R-i. For 
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FIGURE 1. Growth rates K, for first modes: *-*-*-*, axisymmetric (m = 0); -, first non- 
axisymmetric (m = 1); ----, second non-axisymmetric (rn = 2); ----, third non-axismetric 
(m = 3); at various values of non-dimensional radius ro :  (a) ro = 3;  (b) ro = 1 ; (c)  ro = a. 
3. Linear three-dimensional wave packets 

3.1. Dispersion relation 
The case d - Rf corresponds to lower-branch instability, first studied by Smith & 
Bodonyi (1980) and later by Bogdanova (1982) and Bogdanova & Ryzhov (1983). 
They investigated small free flow oscillations of the kind 

(3.1) 
with no-slip ensured at the wall 

U =  V =  W=O at Y=O. (3.2) 

( U - Y ,  V, W , P , A ) = d ( O ,  V,  FV,P,2)exp(wt+ikX+irn8) 

Then after setting the amplitude parameter cY+ 0 we arrive at a linearized problem. This 
problem is an eigenvalue one and its solution leads to the dispersion relation (Smith & 
Bodonyi 1980; Bogdanova 1982) 

@(a) = Q,(k), i.2 = w(ik)-%, (3.3 a) 

(3.3b) 

(3.3 c) 

where Ai(0 is the Airy function decaying exponentially in the sector larg 51 c in. In 
(3.3) m must be an integer, whereas either the wavenumber k or the frequency wo = -iw 
may be a parameter taking on real values. It is well known that dispersion relations of 
the kind (3.3a) have the numerable set of roots (for each rn) w, = (ik$R,(k;rn) 
originated at k = 0 from zeros of the Airy function derivative. Only one of these roots, 
namely the first, is unstable, i.e. Rew, > 0 for some values of k , m .  

Smith & Bodonyi (1980) and Bogdanova (1982) studied only neutral stability, when 
Imw, = Imk = 0. But it is well known that most unstable waves are of primary 
importance in developing the linear instability process. So we should proceed further 
in studying the dispersion relation (3.3). 
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FIGURE 2.  Maximum growth rate K, for first modes (curves as on figure 1 )  versus l /ro.  

3.2. Further study of the dispersion relation 
We will be interested in the so-called temporal instability, setting k to be a real 
parameter and searching for complex values of w by numerical solving of (3.3). In (3.3) 
the non-dimensional radius r,  is a parameter which is related to the non-dimensional 
distance from the pipe entrance by ro - L-i (see Smith 1976). 

First, consider the flow near the inlet (small L or large r,) and then decrease the value 
of ro, corresponding to a downstream movement into the pipe (increasing L). As 
r ,  + 03 and k ,  m = 0(1), Q, + Q,,(k, m = 0) = (ik)flk(, i.e. the Blasius stability 
properties are retrieved, as one would hope, nearer the pipe entrance (Smith & Bodonyi 
1980). This large-r, approximation is good enough even for ro = 3, see figure 1 (a).  This 
figure shows that first several modes have practically identical dispersion properties 
(wave dispersion in the azimuthal direction appears only at m - yo), so corresponding 
curves (on figure 1 a)  differ only slightly from that of the boundary layer on a flat plate. 
Let us define the maximum growth rate K? = max Re w l ( k ;  m) = Re q ( k Y  ; m) and 
next trace its dependence on r, .  Results are summarized in figure 2. With increasing r ,  
the maximum growth rate goes down and the first non-axisymmetric mode is the most 
slow decaying. Therefore it becomes the most unstable (at Y, FZ 1)  whereas the 
axisymmetric mode approaches the second non-axisymmetric one (more details are 
shown in figure 1 b). So at ro = + the first non-axisymmetric mode has approximately 
two-fold domination in comparison with the axisymmetric one (see also figure Ic). 
Finally at ro M 0.3 the value of KY falls to its asymptotic value of +2/2 (for all m) in 
accordance with the short-wave asymptote 

w1 =-ik2+(l-i)+2/2+ ... as k++03,  

which is just the same as for triple-deck disturbances in the boundary layer on a flat 
plate (see, for example, Smith 1986; Ryzhov & Terent'ev 1986). The asymptotic value 
f 4 2  corresponds to high-frequency waves (see also figure l), so one can conclude that 
far downstream from the inlet relatively high-frequency waves may become more 
important and start to play the leading role in the instability process. The second 
general conclusion concerns the importance of the first non-axisymmetric mode. (It is 
interesting to note that wavenumbers m = k 1 were emphasized by Smith & Bodonyi 
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FIGURE 3. Source function &,(A', 8). 

1982 in their study of the nonlinear instability of a fully developed Hagen-Poiseuille 
flow.) How its predomination is revealed is the subject under consideration in the next 
subsection. 

3.3. Wave packets 
One part of the whole hydrodynamics stability problem is the problem of receptivity, 
i.e. how various external disturbances excite free flow oscillations. In the context of 
triple-deck theory this problem has been intensively studied in the last few years (see 
reviews of Ryzhov & Savenkov 1989; Goldstein & Hultgren 1989; Kozlov & Ryzhov 
1990 and references therein). Its investigation requires solving the initial-value problem 
which, for the case of blowing-suction as an external source considered below, consists 
of equations (2.2)-(2.4) with the wall conditions 

U =  W =  0, V =  $q(t,X,O) at Y = 0. (3.4) 

Next we shall consider the linear receptivity problem assuming 6+0. Using 
Fourier-Laplace transformation leads to the formula for perturbed wall shear 
7; = aU/aY- 1 (Ryzhov & Savenkov 1989) 

m 

7; = 4 Re ( r F(t, k) exp (ikX) dk), (3.5a) 

(3.56) 

where F, is the term connected with the peculiarities (if any) of the function K ( w ,  k, m) 
in the complex plane w ;  and 6 stands for the Fourier-Laplace image 
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FIGURE 4. Three-dimensional linear wave packet at r(, = 3 (at time t = 3):  (a)  perspective view; 

(h)  disturbcd surface stress 7: contours. 

Consider next a pulse source (I V,I + 0 as t --f cc) which excites a continuous k-spectrum 
of flow oscillations. Taking the source function 4, of the form 

V, = h ( t ) f i X )  g(0 )  with h = H t  exp ( - t )  (3.7) 

we set H = 2 and .f = exp (- X ' )  in all further computations. Choosing 

g,,, = exp(-m2//8)(8n)-f 
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FIGURE 5.  Same as figure 4 but for Y,, = 1 .  

9 

we have a g-distribution such as presented in figure 3 (instead of g =go(@ = 
exp (- 2a2) for the case when gm is defined by the integral transform). 

The first pattern (figure 4) is for the case r,, = 3 which corresponds to the immediate 
vicinity of the pipe entrance. In this case modes do not have any dispersion in the 
azimuthal direction. Therefore a wave packet at ro = 3 reproduces the &distribution of 
the g-function, so wave fronts are flat. 

At ro = 1 (see figure 5 )  the first non-axisymmetric mode becomes dominant : the 8- 
distributions reveal a ‘two-crest’ shape for 10 < X < 15. In the region X >  15 wave 
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X 
FIGURE 6. Same as figure 4 but for yo = $. 

fronts remain flat due to over-riding of the axisymmetric mode there. Thus as early as 
at t = 3 the disturbances initially localized at (81 < 1 reach the opposite side of the pipe 
wall. 

At ro = a the first non-axisymmetric mode prevails over others that are reflected in 
&distributions (figure 6). Thus the non-axisymmetry of the flow may yet be revealed 
at the linear stage. 
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FIGURE 7. (a) Spectral distributions at t = 1 (r,, = 3) : * - * -* -, Rc TJk) ; --, amplitude 17,J ; - - --, 
1 ~ ~ 1  for linear case. (b)  Surface stress T,(X) at t = 1 (r,, = 3 :  -, fully nonlinear; ----, linear case). 

4. Nonlinear stage of development of axisymmetric disturbances 

4.1. Numerical results 
We shall solve the fully nonlinear problem (2.2)-(2.4), (3.4) with the use of the pseudo- 
spectral scheme of Burggraf & Duck (1981), developed later by Duck (1985, 1987, 
1990), and restrict ourselves to a purely axisymmetric case. The pseudo-spectral 
method is based on the idea of decomposition of the solution into Fourier series (of the 
formflt, y )  exp (ikX), i.e. on the idea that is inherent in the normal-mode approach. So 
this method is efficient in solving linear and weakly nonlinear problems (in treating 
fully nonlinear ones it seldom if ever produces results better than those from other 

... j ,:.. ' ' 
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FIGURE 8. Same as figure 7 but at t = 3. 

methods). Besides, in the Fourier space the interaction law (2.3 a) takes its simple form 
(2.3b, c) and flow reversal is handled correctly without the need for any special 
treatment . 

Throughout, in further computations 256 Fourier components were chosen with 
step Ak = 0.1 and 16 grid points were taken in the transformed (accordingly to 
Y = r/(l-r)) normal direction; timestep At = 0.01. The blowing-suction function 
V, is chosen in the form of (3.7) with g(0) = 1, that is 

& = Htexp(-t-X*). (4.1) 
Next we set H = 2 and will solve the problem for a number of values of r, = 3, 1, and 
t, corresponding to different distances from the pipe entrance. 
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FIGURE 9. Same as figure 7 but at t = 4. 

4.1.1. Immediate vicinity of the pipe entrance (To = 3) 
Since Blasius stability properties are retrieved in the immediate vicinity of the pipe 

entrance (Smith & Bodonyi 1980 and 83.2 above), one would expect that the scenario 
of disturbance development at ro = 3 resembles that for the boundary layer on a flat 
plate (as described by Duck 1987, 1990; Ryzhov & Savenkov 1989, 1992). 

At small times up to 1 = 1 (figure 7) numerical solution is in accordance with the 
estimation 

T k  - -tiV,,(X) as t+O+, 

showing that the initial spectrum distribution is close to the function V,,(k). 
Nonlinearity has practically no effect on the solution at t = 1 : the amplitude IF,J grows 



14 I .  V.  Smenkov 

(0) 
1 .o 

0.5 

0 5 10 

k 
15 

10 15 20 25 30 35 

X 
P ~ ~ , L I A I -  10. Same as figure 7 but at t = 5 .  

slightly I I  C O T , I ~  i i ; m i  w t i i  thc lincxr case leading to some increase in amplitude of the 
n c p t i v :  ~I.*.I'  , (,i ( (11-2 7). Moreover, even at t = 3 (figure 8) the nonlinear 
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FIGURE 10. Same as figure 7 but at t = 5. 

slightly in comparison with the linear case leading to some increase in amplitude of the 
negative peak T:,(X) (see figure 7). Moreover, even at t = 3 (figure 8) the nonlinear 
distortions may be seen only in the tail of the wave packet, whereas the main part of 
the wave packet which is formed from the most unstable waves remains almost the 
same as in the linear case. Finally at t = 4 the most unstable disturbances with 
wavenumbers k approaching k y  = 2.5 take the leading role (figure 9) and reach 
amplitudes which are suiticient for nonlinear generation of the second harmonic. 
Nevertheless at this stage the second harmonic does not lead to any qualitative change 
in the solution (figure 9a). Later the generation of high-frequency harmonics with 
k = n k y  (and large n) takes place, which leads to gradual filling of the high- 
wavenumber spectra (figures 10 and 11 for t = 5 and 5.5 respectively). At the moment 
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FIGURE 1 1 .  Same as figure 7 but at t = 5.5. 

t = 5.5 disturbances reach the end of computational spectrum region ( k  = 25.6) and 
after this time the numerical scheme fails (with the chosen grid parameters). 

The scenario of disturbance development is as follows : after the linear growth of the 
most unstable waves the second harmonic, the third one and so on are exited 
subsequently leading to amplification of peaks in the wave packet (figures 10 and 11) 
but not changing its group velocity. Note that even at the fully nonlinear stage the high 
harmonics do not affect in practice the first one with k = k v  (see comparison with the 
linear case in figures 10 and 11). 
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FIGURE 12. Phase velocity c(k) = Imo, (k ;O) /k:  ----, yo = 3; -, ro = 1. 

4.1.2. Resonant case: r,, = 1 
Before proceeding to the study of the case with r,  = I let us consider in more detail 

dispersion properties of axisymmetric waves. First and foremost let us look at the 
phase velocity c(k) = Imw,(k)/k (figure 12). The phase speed is almost constant 
(c z - 3) for a wide range of wavenumbers 1 < k < 2.5 which corresponds to the most 
unstable waves. The condition of subharmonic resonance c(k) = c($k) is valid for 
k = k, z 2.2 x k y .  The stable region has practically disappeared (figure 1 6): the 
neutral wavenumber k z 0.1 (compare with figure 1 u for r,, = 3) .  As a result the weakly 
nonlinear effects appear as early as t = 3: the local maximum is clearly seen in figure 
13 (a) at k = k, z 2.2 - this is the generation of the second harmonic with respect to the 
subharmonic with k = $ks. One can see that in this case only the fundamental wave 
(k  = k,) is greatly amplified (although the subharmonic is also fed, but only slightly), 
while in the classic case of subharmonic interaction only the subharmonic is greatly fed. 
As a result of this interaction, at time t = 4 the fundamental wave with k = k,  reaches 
values of amplitudes exceeding those for the linear case by 2-3 times (figure 14a). 
Simultaneously the synchronized spectrum filling takes place (as 

c(k, + k , )  x c(k,) z c(k,) 

for 1 < k,,  k, < 2.5), the Fourier amplitude 1yWl decaying monotonically as k- t  cc 
(figures 14a, 15 a). The spectrum is filled very rapidly, so the numerical simulation must 
be stopped at t = 4.2 (compare with the case ro = 3 ,  when we could compute up to 
t = 5.5). 

The synchronized interactions lead to the formation of ‘spike’ (figure 156). The 
spike amplitude grows very rapidly and its lengthscale decreases. The spike moves with 
a velocity which is close to the phase velocity of the most unstable waves, c z 3, which 
is explained by the synchronized mechanism of its development. The spike’s formation 
is essentially nonlinear, while the wave packet, spreading in front of it (with the group 
velocity U = -a  Imw,/ak = 4.5, see for example, Ryzhov & Terent’ev 1986) remains 
linear in its nature (figure 146). 

It is most likely to suppose that the structure of this spike is described by some 
singular solution of the triple-deck theory. Such singular structures were proposed by 
Smith (1988), who concluded that a singularity can occur at finite time in any unsteady 
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FIGURE 13. (a)  Spectral distributions at t = 3 (ro = 1): *-*-*--, Re?#); -, amplitude I?J; ----, 
1 ~ ~ 1  for linear case. (b) Surface stress 7 J X )  at t = 3 (ro = 1): -, fully nonlinear; ----, linear case. 

interacting boundary-layer formulation. Unfortunately, the pseudo-spectral method 
used in the present paper (as any conventional Euler method) exhibits severe difficulty 
in accurately evaluating the intense variations in flow field and fails to provide results 
for times immediately prior to the appearance of a singularity. The Lagrangian method 
is more suitable for the computation of unsteady boundary-layer flows that develop an 
eruptive character. This method was recently applied by Peridier, Smith & Walker 
(1991 b) in the interacting boundary-layer formulation. Their results appear to confirm 
quantitatively that the singularity encountered is that described by Smith (1 988) in 
what was termed ‘moderate break-up ’ of the interacting boundary-layer formulation. 
The present results are very similar to those of Peridier et al. (1991 b) in the structure 
of the singularity that forms (the form of sharp spike, three-tier structure of velocity 
profiles near the point of breakup, etc.). Of course, the present computations are too 
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inaccurate for resolving which singular structure is formed, but the tendency to its 
formation is clearly seen. 

Anyhow, the present results point to the formation of a concentrated vortex which 
may be a source of a turbulent spot, as was proposed by Smith et al. (1990). 

4.1.3. Far downstream location of disturbances 
Next we pursue an investigation of the problem of the development of disturbances 

located far downstream. Computational results for r, = 2 are presented in figure 16. 
Here a spike is also formed, and the nature of its formation is resonant. To see this 
nature, we now use an analytical approach to the problem. In the far downstream limit 
rO+O from ( 2 . 3 ~ )  it is easy to obtain that 



Wave packets, resonant interactions and solitons in pipe f low 19 

w1 = - ik - + kr, k2 ++(yo k); + O(ri) (4.3) (: 1 so 

for r: 4 k < I / r , .  
Hence the phase speed c, = -Imo,(k)/k x 2/r ,  (i.e. approximately constant) for 

most waves, and disturbance development takes a synchronized character. Further, 
growth rates Rew,(k) fall down decreasing Y, (see (4.3)), so the process of singularity 
formation becomes prolonged (figure 16): the spike appears only at t = 6.5 and the 
computation may be continued up to t = 7. 

One can see here the solitary character of the development of the region with 
7, < 1 (figure 16): distributions of 7, are almost the same. Here the amplitude growth 
is connected with the weak instability of the flow. For this case a weakly nonlinear 
theory in the spirit of Smith (1986) may be constructed. But instead of this we consider 
another (‘far’) limit, when instability disappears completely. 
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16. Surface stress 7 J X )  for ro = f at various times t :  (a) smooth 

(b)  spike formation. 
evolution ; 

4.2. High-frequency/large-amplitude disturbances 
Following to Zhuk & Popov (1989a) we set 

X =x-'l?, t = x-", A =xi, P = x2F, U =  26, V =  x 3 f ,  y =  X F  
and take the limit x + 00 in the system (2.2). It is easy to see that the solution of the 
inviscid problem is thus obtained 
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The pressure-displacement law (2.3) in new variables is 

Choosing the general case x = r;’ and bearing in mind the wall condition 
T( = 0) = we finally get the system (tildes are omitted) 

(4 .6a)  

which governs the spreading of high-frequency/large-amplitude lower-branch dis- 
turbances. 

The no-slip condition on the wall may be satisfied by introduction of a viscous wall 
sublayer of thickness d Y = O(x-’). The motion in this sublayer is governed by the 
classical system of Prandtl equations with prescribed pressure which will be known 
after solving (4.6). Whether this problem with prescribed pressure gradient has a 
solution at any time or really terminates in a finite-time singularity is the problem that 
calls for further investigation. Very often boundary-layer solutions break down in a 
finite-time singularity, see for example, Peridier et al. (1991 a, b )  and references therein. 
But there are cases when the solution does exist. For example, Zhuk (1992) has shown 
that a consistent boundary layer can be fitted beneath the Benjamin-Ono solitary train. 

5. Solitons 
5.1. Large-sized, short-scaled disturbances ( A  9 R-;) 

The system (4.6) can be obtained directly from the original Navier-Stokes equations. 
Setting d % R-8 (see (2.3)) leads to an inviscid problem having solution (4.4) which 
immediately gives rise to the system (4.6). Such large-sized, short-scaled (in comparison 
with standard triple-deck scaling) inviscid disturbances was first considered by Zhuk & 
Ryzhov (1982) and more recently by Smith & Burggraf (1985), who reasoned that a 
subsequent stage of the instability process (after the stage of linear amplification) is the 
‘Euler stage’ governed by an equation of type (4.6a) which for the problem of an 
incompressible boundary layer on a flat plate coincides with the classic Benjamin-Ono 
equation. This idea was developed by Rothmayer & Smith (1987) and more recently 
by Ryzhov (1 990) in connection with experimentally observed soliton-like structures 
(Borodulin & Kachanov 1990; Kachanov 1991 a, b) in the K-regime of boundary-layer 
transition. 

The fundamental feature of the Benjamin-Ono equation is that it has solutions in the 
form of solitons. A similar feature is inherent in the homogeneous system (4.6) which 
will be studied in the next subsection. 

5.2. Homogeneous problem 
First of all, we prove that the homogeneous system (4.6),  i.e. 

(5.1 a-c) 
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is conservative. After multiplication of (5.1 a)  by A(t ,  X )  and integration of the result 
with respect to X from - 00 to + co (suggesting / A (  + 0 as X+ & co) we obtain 

- - ( A 2 )  l a  = - ( A +  ap 
2 at ax ’ 

where ( B )  = BdX. Using the convolution integral 
-m 

( A B )  = 2n l:m A(k) B( - k)  dk 
immediately leads to 

( A  E) = 2n lyE ikh,(k) X(k) X( - k)  dk = 0 

because the integrant is an odd function (h,(k) is an even function and &k) X( - k )  is 
always even). Thus ( A 2 )  = const, that is the system preserves its energy in time. 

It is well known that competition between dispersion and nonlinearity may lead to 
the formation of solitons, as this is the case for the Benjamin-Ono equation. Therefore 
one can expect that the (5.1) has solitary solutions as well. 

5.2.1. Long-wave limit : Kovteweg-de Vries equation 

interaction law (5.1 b) reduces to 
We start to study solitons using limiting cases. In the long-wave limit k+O the 

or 

P/J = h,(k) = 2 + ik2 + O(k4) as k + 0, (5 .3  a )  

P = 2 A - $ a 2 A / a X 2 .  (5.3b) 

Hence (5.1 a)  takes the form 
aA aA aA 1 a3A - + A -  = -2-+--, 
at ax ax 2ax3 (5.4) 

( 5 . 5 )  By using A = - - -  :A’, X = - 2/6X+ 2t,  t = 12 1/6T 

it transforms into the classic Korteweg-de Vries equation which has the well-known 
one-soliton solution. In original variables this solution becomes 

A = - A ,  sech’ ( (A0 /6 )4 [X-  ct]), 

c = c(A,) = 2 - A 0 / 3 ,  
(5.6a) 

(5.6b) 

where amplitude A ,  = const > 0. The region of applicability of approximation (5.6) to 
the original problem (5.1) is restricted to small A ,  because (5.4) was obtained in the 
long-wave limit and hence the spatial size )A,/61$ < 1. 

The formula (5.6b) shows that the velocity of a soliton cannot exceed the value 
c(A, = 0) = 2 .  This conclusion is valid in the general case and we prove it now without a 
supposition about the smallness of amplitude A, .  Taking the form of running waves 
A = A,(X-  ct) and assuming /A,([)  1 --f 0 as [ + 

The second integration from - 00 to + co yields 

The left-hand side of (5.7) is a non-negative quantity, hence c < 2 (computations have 
revealed the existence of solitons with negative ‘mass ’ ( A , )  only). 

00 after integration we have 

- cA,(() +;A:(() = - P(Q. 

( A ; )  = 27c(cA,(O)-h,(O)X,(O)) = (C-2 ) (A , ) .  (5.7) 
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FIGURE 17. Shapes of solitons with amplitude A, and phase velocity c: (a) A ,  = 1.25, c = 1.7; 
(b) A ,  = 6.3, c = 0; (c) A ,  = 13.5, c = -2.1; *-*--*--, original problem (5.1); ----, Korteweg-de 
Vries approximation; -, Benjamin-Ono approximation. 

Formula (5.6b) shows that with an increase of amplitude the soliton moves slower, 
at some critical value A ,  = A ,  = 6 stops, and at A,  > A ,  starts to move upstream, its 
velocity growing linearly with the increase of amplitude. As computations (based on a 
pseudo-spectral scheme) show, this phenomenon does take place ; moreover, the 
formula (5.6b) works well up to A,  M 10 (so the critical value A ,  = 6.3 is close to the 
prediction A ,  = 6 ) ,  although the discrepancy in soliton shape is already seen in figure 
17 at A,, = 1.25. 

5.2.2. Short-wave limit: Benjamin-Ono equation 
With the increase of amplitude A,  the characteristic lengthscale of the soliton 

decreases, therefore at large A ,  the short-wave asymptote must be involved. Taking the 
limit k --t co, we have 

p / X =  h,(k) = l k l+ t+O( l /k )  as k+co  (5 .8 )  
thus obtaining the Benjamin-Ono dispersion : w,(k) = ikh,(k) = iklk( + i k / 2  (the second 
addendum gives only shift in speed; we can exclude it applying the Galilean 
transformation). Hence in the short-wave limit (5.1 a) reduces to ‘shifted’ Ben- 
iamin-Ono eauation 

the well-known one-soliton solution of which has the form 

A = -  A0 

1 + A i ( X -  ~ t ) ~ / 1 6 ’  
(5.10a) 

c = -A0/4+;. (5.10 b) 

The formula (5.10b) is unusable for estimation of the critical value of A ,  (it gives 
A ,  = 2),  but it approximates the shape of a motionless soliton much better than the 
long-wave analogue ( 5 . 6 ~ ~ ) .  Much better results are given by (5.10a) for the soliton 
shape at A ,  = 13.5 (figure 17), whereas velocity c x -2.9 given by (5.10b) differs 
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FIGURE 18. Oscillatory wave produced by pulse suction ( H  = -7). 

noticeably from the accurate value c = - 2.1. Thus the long-wave approximation (5.6) 
gives a good estimation of the soliton velocity and the short-wave one (5.10) of its 
shape. 

Finally, further computations confirm that the solitary waves obtained are solitons, 
i.e. they reproduce their shapes after interactions. 

5.3. Soliton generation 
Next we shall study the inhomogeneous problem (4.6) with the forcing term V, which 
represents various external sources : humps, injections etc. So we shall study the 
nonlinear receptivity problem for large-sized short-scaled disturbances. Corresponding 
inhomogeneous problems in boundary-layer situations have been studied in a number 
of Russian works: by Zhuk & Popov (1989~) and Popov (1992) for a subsonic 
boundary layer on a flat plate, by Zhuk & Popov (19896) for its supersonic 
counterpart, and by Zhuk & Popov (1989 b) for an incompressible jet developing along 
a wall. 

5.3.1. Disturbances produced by suction 
We start to analyse the problem (4.6) with the most simple (in solution behaviour) 

case of suction which corresponds to H < 0 when choosing a disturbance source in the 
form 

V, = Hf( t )  V,,(X), V,, = exp(-X2). 

A pulse source with 
f = texp(-t) 

(5.11) 

(5.12) 

produces only an oscillatory wave with the amplitude slowly decaying in time (figure 
18). 

A quasi-stationary source with 

(5.13) 
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FIGURE 19. Disturbances from quasi-stationary suction ( H  = - 

forms a shock-like structure (figure 19) which is governed by the equation 
x 

; A 2 ( X ) + P ( X )  = - (5.14) 

In the present case (V,) =l 0, so A ,  = A(m) =t= 0. The quantity A ,  gives the non-zero 
background for a spreading oscillatory wave (figure 19). On the tail of this wave where 
it touches the non-zero background a soliton starts to form. It moves faster than a 
soliton of the same amplitude spreading on the zero background. It is easy to see by 
performing the Galilean transformation : so if A,(X-  ct) is a solution of (5 .  I), then 

A,+A,(X-(c+A,)t) 

is also a solution. Later the second soliton starts to form in its turn (figure 19). In the 
limit t ?r 03 its amplitude reaches the value of the first one. Generally at t = 03 the 
oscillatory wave transforms into a soliton train. 

Thus only stationary suction produces solitons which can run only downstream. 

5.3.2. Soliton generation by blowing 

Blowing brings a negative ‘mass’ ( V,) < 0, thanks to which generation of solitons has 
already taken place in the regime of a pulse source. A perturbation of the form (5.11) 
and (5.12) with H > 0 generally produces two solitons and a barely distinguishable (on 
their level) oscillatory wave; for a typical pattern see figure 20. 

The non-vanishing influence on the flow by means of blowing leads to the generation 
of a soliton train (figure 21). Knowing ‘mass’ I ( A , )  I and velocity c, of a single soliton 
it is easy to estimate both the number of solitons generated up to time t :  N ,  z 
( & ) / ( A , )  and the distance between them in the train: 
AXs = c,I < A , ) / (  V,,) I .  

2 F L M  2 5 2  
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FIGURE 20. Solitons produced by pulse blowing ( H  = 7). 
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FIGURE 21. Soliton train from quasi-stationary blowing ( H  = 5). 

5.3.3. Disturbances produced by a quasi-stationary hump 
We can consider other sources of disturbances, for example humps on a wall. If the 

form of the hump is given by the function F(t,X), the problem under consideration 
remains the same (see, for example, Zhuk & Popov 1989a), namely, (4.6) with the 

(5.15) 
function V, given by 

Thus the hump affects the flow as a combined suction-blowing with the zero ‘mass’ 

It is easy to see that in the case of the hump the stationary solution vanishing at 
infinity can exist because the right-hand side of (5.14) tends to zero as X+ 00 and thus 

(5.16) this equation immediately gives 

a v, = - - %(F). ax 

(V. 

- F )  = i A 2 .  
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FIGURE 22. Disturbances produced by quasi-stationary hollow ( H  = - 1). 
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FIGURE 23. Disturbances produced by quasi-stationary hump ( H  = 2). 

Integrating (5.16) with respect to X leads to the relation 

h,(O)(<A) - <F>> = ;<A2)? 
which gives the necessary condition for existence of a stationary solution. Thus classic 
Benjamin-Ono and Korteweg-de Vries equations admit no stationary solutions 
(due to h,(O) = 0) whereas such solutions are possible in inlet-flow situations where 

In fact, computations based on the simplest pseudo-spectral scheme showed that a 
solution of (5.16) does exist in the range of the hump (hollow) height H ,  < H < cc 
with H* = - 1.33 for F = F,,(X) = Hexp (- X 2 ) .  Such stationary solutions are clearly 
seen in figures 22 and 23: they are parts of solutions, centred around X = 0. Here the 
stationary hump produces no stationary upstream or wake effects as is the case in some 

h,(O) * 0. 

2 - 2  
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range of flow parameters, when d - R-i (Smith 1976). This can be directly seen from 
(5.16) because in the far-upstream and far-downstream regions, where IAI is vanishingly 
small, neglecting of the nonlinear term in (5.16) gives A + F as X+ & 00. 

6. Discussion and conclusions 
Thus a detailed study of disturbance development, both three-dimensional linear 

and axisymmetric nonlinear, has been done in the framework of asymptotic triple-deck 
theory. The linear analysis has shown that resonant wave interactions are possible on 
the purely axisymmetric disturbances. Numerical computations have confirmed that 
resonant interactions do take place. They lead to enhanced disturbance growth, 
producing a sharp spike which represents a concentrated vortex. The amplitude of the 
spike grows very rapidly, so the boundary-layer solution seems to develop a finite-time 
singularity. 

Relatively high-frequency/large-amplitude disturbances (with respect to lower- 
branch scaling) have been considered as well. They are predominantly inviscid, i.e. they 
are governed by inviscid equations (although finally the Prandtl problem for boundary- 
layer equations must be solved). The characteristic feature of this inviscid problem is 
that it has solutions in the form of solitons which can run both upstream and 
downstream depending on their amplitude. These solitary solutions are exceptionally 
intriguing in connection with recent controlled experiments by Borodulin & Kachanov 
(1990) and Kachanov (1991 a, b) in which soliton-like structures were observed in the 
K-regime of laminar-turbulent transition in the boundary layer on a flat plate. 

Strictly speaking, the present analysis reveals limiting properties of disturbed flow, 
as the Reynolds number tends to infinity. So what will be the case in the practical 
situation of high but finite Reynolds number, high but finite frequency of perturbation? 
We can suggest that in the initial linear stage, where the linearly most unstable waves 
are of primary importance, lower-branch disturbances must predominate. Then they 
must be amplified through the powerful mechanism of resonant interactions, which 
play the leading role in both K- and N-regimes of flat-plate boundary-layer transition 
(Kachanov & Levchenko 1982; Borodulin & Kachanov 1989). The amplitude of 
disturbances grows very rapidly, provoking transition to the fully nonlinear stage. This 
stage of relatively high-amplitude disturbances must be governed, it seems, by the 
inviscid system of equations studied in $5.  (Such a transition from one scale to another 
was proposed and developed in a number of early papers dealing with high-Reynolds- 
number instability, see Smith & Burggraf 1985, Rothmayer & Smith 1987, Smith et af .  
1990, Ryzhov 1990.) Thus solitons must be formed. In summary, it is exactly the 
scenario of the K-regime of transition in the boundary layer on a flat plate: the linear 
amplification and selection - resonant interactions - the formation of solitons. So we 
have every reason to believe that such a scenario may take place in laminar-turbulent 
transition in inlet flows (resonant interactions and solitons are inherent features for 
inlet channel flow as well, see Savenkov 1992). 
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